

A.U :2010-2011 15 juillet 2011

Epreuve de Mathématiques

Durée: 50 min

Aucun document autorisé. Calculatrice autorisée.

Exercice 1

Résoudre dans C l'équation $3z^2 + (4-9i)z - 5(1+i) = 0$.

Exercice 2

On considère les intégrales

$$I_p = \int_0^{+\infty} \frac{t^2}{(1+t^2)^p} dt$$
 et $J_p = \int_0^{+\infty} \frac{1}{(1+t^2)^p} dt$

- 1. Déterminer toutes les valeurs de l'entier p pour les quelles l'intégrale I_p est convergente. Même question pour J_p .
- 2. côcher la valeur exacte de l'intégrale $\int_{1}^{+\infty} \frac{t^2}{\left(1+t^2\right)^2} dt$:

a)
$$\int_0^1 \frac{t^2}{(1+t^2)^{\frac{3}{2}}} dt$$
; b) $\int_0^{+\infty} \frac{t^2}{1+t^2} dt$; c) $\int_0^1 \frac{t^2}{(1+t^2)^2} dt$

3. Déduire la valeur de I_2 .

Exercice 3

- 1. Développer en série de Fourier la fonction $f(x) = \sin^3 x$.
- 2. A l'aide de la formule de Parseval, donner la valeur de $\int_0^{\pi} \sin^6 x \ dx$.

Exercice 4

Soit $\alpha \in]0, +\infty[$, Etudier pour quelles valeurs de α la série de terme général $u_n = \ln\left(1 + \frac{\left(-1\right)^n}{n^{\alpha}}\right)$ a) converge absolument, b) converge.

Exercice 5

On considère l'application linéaire T de l'espace vectoriel IR³ dans lui même définie par : T(x, y, z) = (5x - 2y + 2z, 2x - y, x + y + z)

a. On munit \mbox{IR}^3 de la norme $\|\ \|_{\mbox{\tiny ∞}}$. Quelle est alors la norme de T ?

b. On munit IR^3 de la norme $\| \cdot \|_1$. Quelle est alors la norme de T?