Concours d'entrée en première année du cycle ingénieur

Épreuve de mathématiques (durée 1h30min)

```
Question 1. Pour x réel, \sin(x) + \cos(x) vaut :
```

- A. $\sqrt{2}\cos(x+\frac{\pi}{4})$.
- B. $\sqrt{2}\cos(x-\frac{\pi}{4})$
- C. $\sqrt{2}\sin(x+\frac{\pi}{4})$.
- D. $\sqrt{2}\sin(x-\frac{\pi}{4})$.

Question 2. La valeur de $\int_0^{\frac{\pi}{4}} \ln(1 + \tan(x)) dx$ est :

- A. $\frac{\pi}{4} \ln(2)$.
- B. # ln(2).
- C. 4 ln(2).
- D. $\frac{8}{2} \ln(2)$

Question 3. Soit $f:[0,1]\to\mathbb{R}$ une fonction continue et telle que $\int_0^1 f(t)dt=0$. On a

- A. $\int_0^1 (f(t))^2 dt \le -(\min(f))(\max(f)).$
- B. $\int_0^1 (f(t))^2 dt \le -(\min(f))^2 (\max(f))^2$
- C. $\int_0^1 (f(t))^2 dt \le -(\min(f))^2(\max(f))$.
- D. $\int_0^1 (f(t))^2 dt \le -(\min(f))(\max(f))^2$

Question 4.) Soit $f:[a,b]\to\mathbb{C}$ une fonction continue, a< b deux réels. $|\int_a^b f(t)dt|=\int_a^b |f(t)|dt$, si et seulement si :

- A. IL existe deux fonctions $\varphi:[a,b]\to\mathbb{R}$ et $\rho:[a,b]\to\mathbb{R}^+$ continue tels que $f(t)=\rho(t).e^{i\varphi(t)}$, pour tout $t \in [a, b]$.
- B. f garde un module constant.
- C. IL existe $\theta \in \mathbb{R}$ et $\rho : [a, b] \to \mathbb{R}^+$ continue tels que $f(t) = \rho(t).e^{i\theta}$, pour tout $t \in [a, b]$. D. IL existe $\rho : [a, b] \to \mathbb{R}^+$ continue tels que pour tout $\theta \in \mathbb{R}$ $f(t) = \rho(t).e^{i\theta}$, pour tout $t \in [a, b]$.

Question 5. Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe C^2 . $|\int_a^b f(t)dt - \frac{b-a}{2}|$ est inferieur à :

- A. $\frac{b-a}{12} \max |f''|$. B. $\frac{(b-a)^2}{12} \max |f''|$. C. $\frac{(b-a)^3}{8} \max |f''|$.
- D. $\frac{(b-a)^3}{12} \max |f''|$

Question 6. On pose $F(\alpha) := \int_0^1 x^{\alpha \cdot x} dx$, on a :

- A. $F(\alpha) = \sum_{n=0}^{\infty} \frac{\alpha^n}{(n+1)^{n+1}}$, et le rayon de convergence de cette serie est $+\infty$. B. $F(\alpha) = \sum_{n=0}^{\infty} (-1)^n \frac{\alpha^n}{(n+1)^{n+1}}$, et le rayon de convergence de cette serie est 1.

C. $F(\alpha) = \sum_{n=0}^{\infty} (-1)^n \frac{\alpha^n}{(n+1)^{n+1}}$, et le rayon de convergence de cette serie est 0. D. $F(\alpha) = \sum_{n=0}^{\infty} (-1)^n \frac{\alpha^n}{(n+1)^{n+1}}$, et le rayon de convergence de cette serie est $+\infty$

Question 7. On considère la fonction $G: x \mapsto \frac{1}{\pi} \int_0^{\pi} \cos(x \cos(t)) dt$, on a :

A. $G(x) = \sum_{p=0}^{\infty} \frac{x^{2p}}{4^p(p!)^2}$, et le rayon de convergence est ∞ .

B. $G(x) = \sum_{p=0}^{\infty} (-1)^p \frac{x^{2p}}{4^p (p!)^2}$, et le rayon de convergence est ∞ .

C. $G(x) = \sum_{p=0}^{\infty} \frac{x^{2p}}{4^p(p!)^2}$, et le rayon de convergence est 0.

D. $G(x) = \sum_{p=0}^{\infty} (-1)^p \frac{x^{2p}}{4p(p!)^2}$, et le rayon de convergence est 1

Question 8. Pour tout $x \in R^*$, on pose $S(x) := \sum_{n=1}^{\infty} e^{-n^2x^2}$. on a :

A. $e^{-(n+1)^2x^2} \leq \int_n^{n+1} e^{-x^2t^2} dt \leq e^{-n^2x^2}$ pour tout $n \in N^*$ et que $S(x) \sim \frac{\sqrt{2\pi}}{2x}$, quand x tend vers $+\infty$.

B. $e^{-(n+1)^2x^2} \leq \int_n^{n+1} e^{-x^2t^2} dt \leq e^{-n^2x^2}$ pour tout $n \in N^*$ et que $S(x) \sim \frac{\sqrt{\pi}}{x}$, quand x tend vers $+\infty$.

C. $e^{-(n+1)^2x^2} \leq \int_n^{n+1} e^{-x^2t^2} dt \leq e^{-n^2x^2}$ pour tout $n \in N^*$ et que $S(x) \sim \frac{\sqrt{2\pi}}{x}$, quand x tend vers $+\infty$.

D. $e^{-(n+1)^2x^2} \leq \int_n^{n+1} e^{-x^2t^2} dt \leq e^{-n^2x^2}$ pour tout $n \in N^*$ et que $S(x) \sim \frac{\sqrt{\pi}}{2x}$, quand x tend vers $+\infty$.

Question 9. On pose $I := \int_0^{+\infty} \frac{x \sin(x)}{x^2 + 1} dx$, on a :

A. I est divergente.

B. I est convergente et vaut $\frac{\pi}{2e}$.

C. I est convergente et vaut $\frac{2\pi}{e}$

D. I est convergente et vaut $\frac{\pi}{\epsilon}$.

Question 10. On pose $J := \int_0^1 \left[\frac{\sqrt{1+x^2}}{x^2} - \frac{\sqrt{1-x^2}}{x^2} \right] dx$, on a :

A. J est convergente et vaut $\ln(1+\sqrt{2}) - \sqrt{2} + \frac{\pi}{2}$

B. J est convergente et vaut $\ln(1+\sqrt{2}) - \sqrt{2} - \frac{\pi}{2}$

C. J est divergente.

D. J est convergente et vaut $\ln(1+\sqrt{2}) + \sqrt{2} + \frac{\pi}{2}$.

Question 11. Soit $S(x) := \sum_{n=0}^{+\infty} \frac{\sin(n\theta)}{n!} x^n$

A. $S(x) = e^{x\cos\theta}\cos(x\sin\theta)$ seulement pour x appartenant à [-1, +1].

B. $S(x) = e^{x \cos \theta} \cos(x \sin \theta)$ pour tout x appartenant à \mathbb{R} .

C. $S(x) = e^{x \cos \theta} \sin(x \sin \theta)$ seulement pour x appartenant à [-1, +1].

D. $S(x) = e^{x \cos \theta} \sin(x \sin \theta)$ seulement pour tout x appartenant à \mathbb{R} .

Question 12. On pose
$$P_n(x) := (1 - x^2)^n$$
 si $|x| < 1$ et $P_n(x) := 0$ si $|x| \ge 1$ puis $h_n := \frac{P_n}{\int_0^{+\infty} P_n(t) dt}$

A. h_n converge uniformement vers 0 sur [-1, 1].

B. h_n converge uniformement vers 0 sur $[-1, -\theta] \bigcup [+\theta, +1]$ si $0 < \theta < 1$

C. h_n converge simplement vers 0 sur [-1, 1].

D. h_n ne converge pas uniformement sur tout sous-intervalle fermé borné et ne contenant pas 0 de [-1, +1].

Question 13.

On considère la forme quadratique Q définie sur \mathbb{R}^3 par

$$Q(x.e_1 + y.e_2 + z.e_3) := x^2 + 3y^2 - 3z^3 - 8yz + 2xz - 4xy$$

 (e_1,e_2,e_3) est la base canonique de \mathbb{R}^3 . La signature syn(Q) de Q est donnée par et il existe une base (e1, e2, e3) de R3 telles que :

A. syn(Q) = (1,1) et $Q(x'.e_1 + y'.e_2 + z'.e_3) = 5y'^2 - 6z'^2$ pour tout x', y', z' appartenant à \mathbb{R}

B. syn(Q) = (1,1) et $Q(x'.e_1 + y'.e_2 + z'.e_3) = 6y'^2 - 5z'^2$ pour tout x', y', z' appartenant à \mathbb{R}

C. syn(Q) = (2,0) et $Q(x'.e_1 + y'.e_2 + z'.e_3) = 6y'^2 + 5z'^2$ pour tout x', y', z' appartenant à \mathbb{R}

D. syn(Q) = (0,2) et $Q(x'.e_1 + y'.e_2 + z'.e_3) = -5y'^2 - 6z'^2$ pour tout x', y', z' appartenant à \mathbb{R}

Question 14.

Pour tout $n \in \mathbb{N}^*$, on pose $s_n := 1^3 + 2^3 + \ldots + n^3$. Soit $n \in \mathbb{N}^*$ on a :

A. $s_n = \left(\frac{n(n+1)}{2}\right)^2$, $s_n \wedge s_{n+1} = (n+1)^2$ si n est pair et $s_n \wedge s_{n+1} = (\frac{n+1}{2})^2$ si n est impair.

B. $s_n = \left(\frac{n(n+1)}{2}\right)^2$, $s_n \wedge s_{n+1} = (2n+1)^2$ si n est pair et $s_n \wedge s_{n+1} = (\frac{n+1}{2})^2$ si n est impair.

C. $s_n = \left(\frac{n(n+1)}{2}\right)^2$, $s_n \wedge s_{n+1} = (2n-1)^2$ si n est pair et $s_n \wedge s_{n+1} = (\frac{n-1}{2})^2$ si n est impair

D. $s_n = \left(\frac{n(n+1)}{2}\right)^2$, $s_n \wedge s_{n-1} = (n+1)^2$ si n est pair et $s_n \wedge s_{n+1} = (\frac{n+3}{2})^2$ si n est impair.

Question 15.

Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, p_n désigne le nombre de chiffres de n dans le système de numération de base 10. On pose $u_n := \frac{1}{n \cdot p_n^2}, n \in \mathbb{N}^*$. On a :

A. $\forall n \in \mathbb{N}^* : 10^{p_n} < n < 10^{p_n+1}$, et $\lim_{n \to +\infty} n(\ln(n))^{\alpha} \cdot u_n = (\ln(10))^{\alpha}$.

B. $\forall n \in \mathbb{N}^* : 10^{p_n-1} \le n \le 10^{p_n}$, et $\lim_{n \to +\infty} n(\ln(n))^{\alpha} . u_n = (\ln(10))^{2\alpha}$

C. $\forall n \in \mathbb{N}^* : 10^{p_n - 1} < n < 10^{p_n}$, et $\lim_{n \to +\infty} n(\ln(n))^{\alpha} \cdot u_n = (\ln(10))^{2\alpha}$. D. $\forall n \in \mathbb{N}^* : 10^{p_n - 1} \le n \le 10^{p_n}$, et $\lim_{n \to +\infty} n(\ln(n))^{\alpha} \cdot u_n = (\ln(10))^{\alpha}$.