Concours d'accès aux filières d'ingénieurs GLSID et BDCC - ENSET Mohammedia Session de juillet 2022

1. Soient les nombres complexes z=1 , $z'=e^{i\frac{\pi}{2}}$ et z'' tels que z+z'+z''=0 alors z'' vaut :

A. $e^{-i\frac{\pi}{2}}$ **B.** $\sqrt{2}e^{3i\frac{\pi}{4}}$ **C.** $\sqrt{2}e^{-3i\frac{\pi}{4}}$ **D.** $-\sqrt{2}e^{-3i\frac{\pi}{4}}$

2. Soient $\alpha, \beta \in \mathbb{R}$. $X^2 + 2$ divise $X^4 + X^3 + \alpha X^2 + \beta X + 2$ si

A. $\alpha = -3$, $\beta = 2$ **B.** $\alpha = 3$, $\beta = 2$ **C.** $\alpha = 3$, $\beta = -2$ **D.** $\alpha = -3$, $\beta = -2$

3. La décomposition en éléments simples de la fraction rationnelle $F(X) = \frac{X^4 - X + 2}{(X - 1)(X^2 - 1)}$ s'écrit :

A. $F(X) = X + 1 + \frac{1}{(X-1)^2} + \frac{2X}{X^2 - 1}$ B. $F(X) = X - 1 + \frac{1}{(X-1)^2} + \frac{2}{X^2 - 1}$ C. $F(X) = X + 1 + \frac{1}{(X-1)^2} + \frac{1}{X-1} + \frac{1}{X+1}$ D. $F(X) = X - 1 + \frac{1}{(X-1)^2} + \frac{1}{X-1} - \frac{1}{X+1}$

4. Soit $E = \{P \in \mathbb{R}[X] / \deg(P) = 2\}$. $\mathbb{R}[X]$ étant l'ensemble des polynômes à coefficients réels.

A. E est un sous
espace vectoriel de
 $\mathbb{R}[X]$ et dim E=1B. E est un sous
espace vectoriel de
 $\mathbb{R}[X]$ et dim E=2C. E est un sous
espace vectoriel de
 $\mathbb{R}[X]$ et dim E=3D. E n'est pas un
sous espace vectoriel
de $\mathbb{R}[X]$.

5. Soit $F = \{(v, w, x, y, z) \in \mathbb{R}^5 / v + w = 0, w + x = 0, x + y = 0, y + z = 0\}$ F est un sous espace vectoriel de \mathbb{R}^5 de dimension

A. 1 **B.** 2 **C.** 3 **D.** 4

6. Soient u=(1,-1,0), v=(1,1,-1) et $w=(1,2,\alpha)$. $\{u,v,w\}$ est une famille liée de \mathbb{R}^3 si α est égale à

A. $-\frac{3}{2}$ **B.** $\frac{3}{2}$ **C.** $-\frac{1}{2}$ **D.** $\frac{1}{2}$

7. Les coordonnées du vecteur u=(3,1,0) dans la base $\{(1,1,0),(1,0,1),(0,1,1)\}$ de \mathbb{R}^3 sont :

Concours d'accès aux filières d'ingénieurs GLSID et BDCC - ENSET Mohammedia Session de juillet 2022

A. $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ B. $\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ C. $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ D. $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$

8. Soit φ l'endomorphisme de \mathbb{R}^3 défini par

$$\varphi(x, y, z) = (x + y + z, x - 2y, x + 7y + 3z)$$

Le noyau de φ est tel que

A. $Ker\varphi = \{(0,0,0\}$ **B.** $dimKer\varphi = 1$ **C.** $dimKer\varphi = 2$ **D.** $dimKer\varphi = 3$

9. Soient $a, b, c \in \mathbb{R}$. Le déterminant $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$ vaut

A. (b+a)(c+a)(c+b) **B.** (b+a)(c-a)(c-b) **C.** (b-a)(c-a)(c-b) **D.** (b-a)(c-a)(c+b)

10. On considère la matrice carrée $A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$

A. (1,2) est un
vecteur propre de A.B. (-1,2) est un
vecteur propre de A.C. (1,1) est un
vecteur propre de A.D. (2,-1) est un
vecteur propre de A.

11. Soit $a \in [1, 2]$. $\sqrt{a + 2\sqrt{a - 1}} + \sqrt{a - 2\sqrt{a - 1}}$ vaut

A. 1 **B.** 2 **C.** 4 **D.** 4a-4

12. $\lim_{n\to\infty} \sqrt[n]{n^2}$ vaut

A. $+\infty$ **B.** 0 **C.** 1 **D.** *e*

13. Soit $(u_n)_{n\in\mathbb{N}}$ la suite numérique dont le terme général est

$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$

 $\lim_{n \to \infty} u_n$ est égale à

A. $+\infty$ **B.** 0 **C.** 1 **D.** 2

Concours d'accès aux filières d'ingénieurs GLSID et BDCC - ENSET Mohammedia Session de juillet 2022

14. Soit la suite récurrente $(u_n)_{n \in \mathbb{N}}$ définie par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2} \left(u_n + \frac{3}{u_n} \right) \end{cases}$

On admet que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite l>0. Alors l est égale à :

A. $\sqrt{3}$ **B.** $\frac{1}{\sqrt{3}}$ **C.** $\frac{1}{3}$ **D.** 3

15. La série $\sum_{k\geq 1} \frac{1}{k(k+1)}$ converge vers :

A. ln2 **B.** $\frac{3}{4}$ **C.** $\frac{3}{2}$ D. 1

16. Soit f la fonction définie, pour tout $x \in [-1, +\infty]$, par :

$$f(x) = \begin{cases} \frac{\ln(1+x) - x}{x^2} & \text{si } x \neq 0\\ -\frac{1}{2} & \text{si } x = 0 \end{cases}$$

f est dérivable et f'(0) vaut

A. $-\frac{1}{4}$ B. 0 C. 1 D. $\frac{1}{3}$

17. $(\ln(1+x))^2 - (\ln(1-x))^2$ est équivalent en 0 à

A. $-2x^3$ **B.** $2x^3$ **C.** $\frac{1}{2}x^3$ **D.** $-2x^2$

18. Le développement limité en 0 à l'ordre 3 de $ln(1 + e^x)$ vaut

A. $ln2 - \frac{x}{2} + \frac{x^2}{8} + o(x^3)$ **B.** $ln2 + \frac{x}{2} - \frac{x^2}{8} + o(x^3)$ **C.** $ln2 - \frac{x}{2} - \frac{x^2}{8} + o(x^3)$ **D.** $ln2 + \frac{x}{2} + \frac{x^2}{8} + o(x^3)$

19. $\int_0^{1/2} \frac{dt}{\sqrt{1-t^2}}$ est égale à

A. $\frac{\pi}{3}$ B. $\frac{\pi}{6}$ C. $2\frac{\pi}{3}$ D. $\frac{\pi}{2}$

20. $\int_0^1 \sin(\sqrt{t}) dt$ est égale à

A. $2\cos 1 + 2\sin 1$ **B.** $2\cos 1 - 2\sin 1$ **C.** $-2\cos 1 + 2\sin 1$ **D.** $-2\cos 1 - 2\sin 1$